Information Processing Letters 43 (1992) 77-81
Morth-Holland

24 Aupust 1992

A self-stabilizing algorithm for maximal

matching *

Su-Chu Hsu and Shing-Tsaan Huang

Instituse of Computer Science, National Tsing Hua. University, Hsincho 30043, Taiwan, ROC

Communicated by K. Ikeda
Received 200 May 1991
Revised 9 April 1992

Abstract

Hsu, 5.-C. and 5.-T. Huang, A self-stabilizing algorithm for maximal matching, Information Processing Letters 43 (1992)

1T-81.

We present a self-stabilizing algorithm for finding a maximal matching in distributed networks, Due to its self-stabilizing
property, the algorithm can avtomatically detect and recover from the faults caused by unexpected perturbations on local
variables maintained on each node of the system, A variant function is provided to prove the correciness of the algorithm

and to analyze its time complexity.

Kevwords: Distributed systems, fanlt-tolerance, maximal matching, self-stabilization, variant function

1. Introduction

This paper presents a self-stabilizing algorithm
for finding a maximal matching in distributed
networks. In any distributed system faults caused
by unexpected perturbations on local variables
are possible. The system should have the ability
to detect the faults and recover from them. The
term self-stabilizing, originally introduced by
Dijkstra [4], is used to distinguish distributed
systems with the property that the systems can
automatically recover from any illegitimate state
and reach a legitimate state in a finite time. The
most attractive feature for a self-stabilizing sys-

Correspordence to: Professor 5.-T. Huang, Institute of
Computer Science, Mational Tsing Hua University, Hsinchu
30043, Tarwan, ROC, Email; sthuangi@ces.nthu.edu. tw,

* This research is supported by the National Scicnce
Council of the Republic of China under the contract NSCE(-
0408-EO07-04,

tem is that each node can, simply by its local
view, detect and recover from the transient faults.
Such a property is very desirable for distributed
systems with fault-tolerance. The concept of self-
stabilization was regarded by Lamport [12] as
Dijkstra’s most brilliant contribution in dis-
tributed systems and a milestone in the work of
fault tolerance. Recent works addressing the
sell-stabilizing problems of distributed systems
can be found in [2,4-11].

Consider an undirected graph G(V, E) where
V' is a node set and E is an edge set. A matching
of G(V, E) is a set of edges M, M CE, in which
no two edges connect to a common node. A
matching M is maximal if it is not properly
contained in any other matching. Note that M is
a maximal matching does not necessarily imply
that M has more edges than any other matching,

Finding a maximal matching sequentially can
be carried out simply by inspecting the edges of

0020-0190 /92 /305,00 £ 1992 - Elsevier Science Publishers BV, All rights reserved 77

Volume 43, Mumber 2

the graph one by one [3]. An inspected edge is
added to the matching if it is not adjacent to any
of the edges that are already there. Unfortu-
nately, a straightforward self-stabilizing imple-
mentation of this approach can hardly be found
in distributed systems. In the proposed self-stabi-
lizing algorithm, nodes can mutually select and
then decide whether they get matched or not.
Due to the self-stabilizing property of our pro-
posed algorithm, each node can locally detect and
recover from the transient faults caused by unex-
pecied perturbations on local variables. For a
self-stabilizing algorithm, proving iis correctness
and analyzing its time complexity are nontrivial.
Following the technigue reported by Kessels [11],
a variant function is provided to prove the cor-
rectness of the proposed algorithm. We further
use the variant function to analyze its time com-
plexity. On a general graph with » vertices, for
the worst case, the upper bound O(n?) is ob-
tained. To find the proper variant function is not
trivial and constitutes the main contribution of
this paper.

The rest of this paper is organized as follows,
In Section 2, the proposed self-stabilizing algo-
rithm is presented. In Section 3, the correctness
and the time complexity of the algorithm are
analyzed. Some remarks are discussed in Section
4,

2. The proposed algorithm

Consider a distributed system with the struc-
ture G(V, E), where |V | = n. Assume that each
node { knows N({), the set of its adjacent nodes
(neighbors) and N(i) is always correct. We let
each node i/ maintain a pointer. The pointer
points to one of i's neighbors which § selects to
match. If i's pointer points to null, it means f
does not select anyone. We use the notation § —j
to denote that the pointer of { points to j, and
the notation { — rudl to mean that the pointer of
i points to null. We also use i < j to represent
i—jand j—i; e, { and j mutually select and
get matched. Due to unexpected perturbations,
the pointers may be affected and vary,

T8

INFORMATION PROCESSING LETTERS

24 August 1992

We use S.i to denote the state of node i. If
i = J, then there are three possible states defined
as follows:

(1) 5.i = waiting if (i =j) A (j — nmudl);

(2) S5.i = matched if i =j;

(3) S.i=chaining f (i =) A (j=2k) k=i
If S.i=waiting, it means { has selected j and
waits for j to select it. If 5.f = matched, it means §
has gotten matched. If 5.i = chaining, it means
has selected j but j has selected another node.

If i = nudl, then there are two possible states
defined as follows:

(4) 5.i = dead if (i — mdl) A (VFf: FENG: S

= maiched);

(5) S.i=free if (i—null)r3j: jeNG):S.|

+ matched).
If 8.i =dead, it means { has no chance to get
matched, because all its neighbors have gotten
matched. If 5.i = free, it means that it still may
have chances to get matched, even though § does
not select anyone.

Note that if S.i = free, then (Vj: je N} 5.j#
dead). We will use this fact to prove Lemma 1 in
Section 3. If 7 — nudl, the 5.i may be free or dead.
This will be used to prove Lemma 2 in Section 3.
A plobal state of the system is defined as a
collection of all states of the nodes in the system.

By the definition of maximal matching, when
the system reaches a maximal matching, each
node’s state must be either marched or dead.
Thus the system is said to be in a legitimate state
(i.e., stabilized) if each node’s state is either
matched or dead. Therefore, the following predi-
cate GMM is introduced. When GMM is true, it
means the system reaches a legitimate state.

GMM = (Yi:: 5.i = matched v 8.i = dead)

We propose a self-stabilizing algorithm such
that a system starting at any illegitimate state is
guaranteed to converge to a legitimate state in a
finite time and remains so thereafter. The algo-
rithm is identically stored and executed in each
node i. The self-stabilizing algorithm is expressed
by a set of rules. The rules are expressed as:

“condition = a corresponding move ™.

Volume 43, Mumber 2

Conditions of each node are defined to be boolean
functions of its own pointer and the pointers of
its neighbors. When the condition of a node is
true, the node may make the corresponding move,
Any node for which the condition is true is said
to have privilege. In some instances, many nodes
may have the privileges at the same time. How-
ever, we require to decide which nodes to make
the moves at a time, and the next moves depend
on the result from the previous moves. This im-
plies that the rules are atomic. We assume there
exists a central demon as introduced in [4] which
is used to select one of the nodes with the privi-
leges. The node enjoying the selected privilege
will then make its move by modifying its pointer.

The self-stabilizing algorithm for maximal
matching

(R1) i = mul) A(Df: jENG) j—0)
=leti—j

(R2) (f — mull) A ¥k K NG —(k—i))
A5 Je NG | — null)
=leti—jf

(RIV=fa(jok)alk+i)
= Let i — nulf

3. Verification

The correctness of our algorithm requires the
fulfillment of the following requirements:

(i) If the system reaches a legitimate state,
no nodes can make further moves.

(ii) If the system is in any illegitimate state,
there exists at least one node which can make a
move,

(iii) Regardless of the initial state and regard-
less of which node is selected to make a move by
the central demon, the system is puaranteed to
reach a legitimate state after a finite number of
moves,

According to the definition of GMM, 1t is
obvious that when GMM is true, no rules can be
applied. Thus, our design meets requirement (i),
The following Lemma 1 proves that our design
also satisfies requirement (ii).

INFORMATION PROCESSING LETTERS

24 August 1992

Lemma 1. If GMM s false, there exists at least
one node which can make a move; i.e., there exists
sonte ride to be applied.

Proof. If GMM is false, then it means that there
must exist some node whose state is neither
matched mnor dead; 1.e., GMM is false =
(i —(5.i = matched v 5.i = dead)). The follow-
ing cases need to be considered:

(1) 5.i = chaining: It is clear that (R3) can be
applied by node .

(2} S.i = waiting: There exists j such that i —j
and j— null. Hence, obviously (R1} can be ap-
plied by node j.

(3) 5.i = free: By the definition of free, there
must exist some neighbor j of { whose state is not
matched. Since 5.j cannot be dead as mentioned
earlier, 5.7 must be free, waiting or chaining. The
following describes the three cases:

(i) S.j=free: It is clear that (R2) can be
applied by either { or j.

(i) 8.j = waiting: Similar to (2), (R1) can be
applied by some & (j — k and & — nudl).

(iii) §.j = chaining: Similar to (1), (R3) can be
applied by j.

From (1}, (2) and (3), we can get that if GMM is
false there exists some rule to be applied. 0O

In order to prove our design meels require-
ment (iii}, we use a verification method based on
a variant function which can be found in [2,6,8—
11]. The basic concepts of the method are: (1) to
give a variant function whose value is bounded:
(2} to prove the variant function monotonically
decreases or increases when nodes make moves.

Let m, d, w, f and ¢ denote the total number
of nodes whose state are matched, dead, waiting,
free and chaining respectively. We define the
variant function F as:

F=(m+d,w, f, c).

The comparison of the values of F is by lexico-
graphical order. Each global state of the system
corresponds to one value of F.

By Lemma 1, if the system is not in a legiti-
mate state, then the nodes of the system can

™

Volume 43, Mumber 2

always make moves. This causes F to vary. By the
definition of GMM, the value of F corresponding
to the legitimate state is (n, 0, 0, 0). Clearly, it is
the upper bound of F. Thus, if we can prove that
F monotonically increases for each move, our
design will meet requirement (iii). The following
lemma will show this idea.

Lemma 2. F monotonically increases each time
when rude (R1), (R2) or (R3) is applied.

Proof. (1) If (R1) is applicd then there will be a
pair of nodes which can get martched. In other
words,

(S.i = free) A (S.j = waiting A j — i)
(after i applies (R1))
= (8.i = matched) » (5.] = marched).

Because the states of { and j are changed to
matched, the states of some neighbors of i and for
j may be changed from free to dead. Further-
more, it should be clear that no node can have its
state changed from marched or dead to any other
state no matter which rule is applied.

Therefore from the above, after (R1) is ap-
plied, no matter how states of nodes will be
affected, we know at least that m increases by 2
and 4 may also increase. It follows that F in-
CTEascs,

(2) If (R2) is applied by node i, then it means

(i = null) A(Vk: kEN(i): —(k—i))
A(3j: fEN(i): j— null)

before the application of (R2). It can be easily
verified that after { applies (R2), only S.i is
changed from free to waiting. In other words,

(S.i = free)
(after i applies (R2))
= (8.{ = waiting).

Thus, after (R2) is applied, m, d and ¢ are
unchanged, f decreases by 1 and w increases by
1. It follows that F increases.

(3) If (R3) is applied by node i, then { — null
after the application of (R3). Only the following

0

INFORMATION PROCESSING LETTERS °

24 August 1992

two cases are possible:

(i) (5.i = chaining} A (Vk: k € NG): =(k =)
(after i applies (R3))
= (5.0 = free A 5.i = dead)

(ii) (5.i = chaining) n (k — i)
/* Mote that 5.k = chaining. * /
(after i applies (R3))
= (S.i = free) A (8.k = waiting)

In case (i), it is clear that although ¢ decreases by
1, either f or d should increase by 1. Hence, F
increases. In case (ii), although ¢ decreases at
least by 2, f should increase by 1 and w should
increase at least by 1. Thus, F increases.

By (1), (2} and (3), we have that F monotoni-
cally increases each time when rule (R1), (R2) or
(R3) is applied. O

The following theorem will show the upper
bound of the time complexity of the algorithm
and Lemma 3 is given to support this theorem.
The proof of Lemma 3 can be found in [1].

Lemma 3, The number of the non-negative integer
solutions (x,, x5, X5, x,) for the equation x, +x,
+x;tx;=nis

(”4_3]: (n+1)*(n+2)*(n+3)
3 [’

Theorem 4. Regardless of any initial state of the
sysiem, the system will converge to a legitimate
state within O(n*) moves.

Proof. (1) By Lemma 1 and Lemma 2, regardless
of any initial value of F, F will converge to its
upper bounded value in a finite number of moves,

(2) Regardless of which global state of the
system, the value of m+d+w+f+c in F is
always equal to n and the values of m+d, w, f
and ¢ are always between 0 and n individually.
Suppose that in the worst case, the initial value of
F is (0,0,0, n), one would like to know how
many moves it may need to transfer F from
{0, 0,0, n) to (n, 0, 0, 0) in the worst case. Such a
problem can be reduced to the problem de-

Volume 43, Number 2

scribed in Lemma 3 with x,=m+d, x,=w,
x,=f and x, =c. Thus, the maximal total num-
ber of moves for the system fo converge to a
legitimate state is

{(n+1*(n+2)*(n+3)
5]
By (1) and (2), the theorem is proved. O

1=0(n%.

4. Conclusions

In this paper, we propose a self-stabilizing
algorithm for finding a maximal matching in dis-
tributed networks. A variant function is provided
to prove the correctness of the algorithm and to
analyze the time complexity. In the worst case,
the upper bound O(n*) moves is obtained. How-
ever, there are two problems associated with the
proposed algorithm: (1) how to analyze and re-
duce the upper bound of the time complexity; (2)
how to relax the requirement of (R1) and (R2)
from the case of testing the pointer of node i and
the pointers of all its neighbors to the case of
simply testing its own pointer and only one neigh-
bor's pointer. Our future work will be devoted to
solving such problems.

Because of the randomness of the network
topology, the initial state of the system and the
selection of moving sequences, it is difficult to
analyze the average number of moves for the
proposed algorithm. However, the derivation of

INFORMATION PROCESSING LETTERS

24 August 1992

the average time complexity of self-stabilizing al-
gorithms is an important problem,

References

[1] R.C. Bose and B. Manvel, lnrroduceion to Combinatorial
Theary (Wiley, New York, 19584) 48,

[2] N.-8. Chen, F.-P. Yu and 5.-T. Huang, A sclf-stabilizing
algorithm [or constructing spanning trees, Inform. Pro-
cess. Letr. 39 (1991) 147-151,

[3] M. Den, Graph Theory with Applications to Engineering
ard Computer Science (Prentice-Hall, Englewood Cliffs,
NI, 1974).

[4] E.W. Dijkstra, Self-stabilizing systems in spite of dis-
tributed control, Comn. ACM 17 (1574) 643-0644,

[5] E.W. Dijkstra, A belated proof of self-stabilization, [is-
tributed Comprat. 1 (1986) 5-6.

[6] M.G. Gouda and T. Herman, Stabilizing unison, Mform.
Process. Lett, 35 (1990) 171-1735,

[7] T. Herman, Probabilistic self-stabilization, fmform. Pro-
cest, Lert, 38 (1990) 63-67.

[8] 5.-T. Huang, Self-stabilizing leader election in uniform
rings, ACM Trans. Programming Language Systems, to
appear.

[9] 5.-T. Huang and N_-5. Chen, A self-stabilizing algorithm
for constructing breadth-first trees, fmform. Process, Letr.
41 (1992) 109-117.

[10] 5.-C. Hsu and 5.-T. Huang, A generalized self-stabilizing
pratocol for centrality problems on tree networks, in:
Proc. of National Computer Symp., Taovuen, Taiwan,
RO, pp. 59-04.

[11]) JLW. Kessels, An exercise in proving self-stabilization
with a variant function, fmform, Process. Lewr. 29 (1985)
3942,

[12] L. Lamport, Solved problems, unsolved problems and
non-problems in concurrency, in: Proe. 3rd ACM Symp.
an Principles of Distributed Computing (1984) 1-11.

31

