Paralle] Computing 18 (1992) 377-391 £ 7]
Morth-Holland

A fully-pipelined systolic algorithm
for finding bridges on an undirected
connected graph

Su-Chu Hsu, Hsien-Fen Hsieh and Shing-Tsaan Huang

Institute of Compater Science, National Tsing Hua University, Hsincfu, Taiwan, ROC

Recewved 7 January 1991
Revised 13 August 1991

Abstract

Hsu, %.-C., H.-F. Hsieh and 5.-T. Huang, A fully pipelined systolic algorithm for finding bridges on an
undirected connected graph, Parallel Computing 18 (1992) 377-349],

A new fully-pipelined systolic algorithm for finding all the bridges of an wndirected connected graph is
proposed. Given a graph of n vertices and m edges, the proposed algorithm uses (2n = 2) systolic cells and
runs in (m + 3n —3) systolic cvcles. This improves a previous result. The use of fully-pipelined cells and the
uniformity of the operations in each cell make the proposed algorithm distinctive.

Kevwords., Undirected connected graph; spanning trees; bridges; systolic algorithm.

1. Introduction

This paper proposes a fully-pipelined systolic algorithm for finding all the bridges of an
undirected connected graph. A bridge of such a graph is an edge whose removal disconnects
the graph. Let ¢ =(}, E) be an undirected connected graph with |V | =n and | E| =m. An
ordered spanning tree of & according to an edge sequence can be constructed as follows, Let
us maintain a graph ' initially with a vertex set I and an empty edge set. Then, attach each
edge ¢ of £ one by one to &' according to the edge sequence. If a cycle is formed in &'
because of the attachment of e, edge e is discarded. Otherwise, edge e is appended to G'.
After all the edges of E are considered, the resulting ' will be an ordered spanning tree of
(7. An ordered spanning tree constructed by this way depends very much on the edge
sequence considered. For example, the first edge in the edge sequence is always one of the
edges of the spanning tree. Such a construction is used in our algorithm to determine whether
an edge is a bridge or not.

Two lemmas are derived in this paper. Lemma 1 gives a way to test whether an edge ¢ is a
bridge or not. First, we construct an ordered spanning tree from an edge sequence in which
edge e is considered last. If edge ¢ is the last edge of the ordered spanning tree, then edge ¢

All correspondence should be addressed to: Prof. Shing-Tsaan Huang, Institute of Computer Science, Mational
Tsing Hua University, Hsinchu 30043, Taiwan, ROC
This research was supported by MNational Science Council of the REepublic of China under Contract NSCT79-0408-
EOOT7-03.

(M67-8191 /92 /505.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

374 5.-C. Hsuw et al,

is a bridge. Otherwiser edge e is not a bridge. Let T'= (I, E4) be an arbitrary spanning tree
of G. It is found that all the bridges are edges of T. By the observation, we simply test
whether the edges of T are bridges rather than test all the edges of . By Lemma 1, we only
need to construct n — 1 ordered spanning trees, each with one of the edges of T being
considered last, and then we check whether the last considered edge is on the ordered
spanning tree. Lemma 2 gives an efficient way to construct these (n — 1) trees one after
another and each can be constructed from the previous one.

The proposed algorithm is based on the two lemmas. These two lemmas not only help the
implementation in the systolic arrays but also decrease greatly the time complexity. The two
lemmas support the use of fully-pipelined cells and the uniformity of the operations in each
cell. The part that implements the construction of the ordered spanning trees on a fully-pipe-
lined systolic array follows Huang's F-function [3]. The algorithm uses (2n — 2) pipelined cells
and runs in (m + 3n — 3) systolic cvcles. This improves the previous algorithm proposed by
Prasad and Rangan [5]. Their algorithm, based on an inverted spanning trec and a layout
function L, runs in (2m + Tn — 2} systolic cycles by using # pipelined cells. Other related
systolic algorithms on graph problems can be found in [1,2,4 and 6],

The rest of the paper is organized as follows. In section 2, we sketch the theorctical
foundation used in owr algorithm and propose a pseudo algorithm for finding bridges. In
section 3, we review the F-function and describe how to implement the proposed algorithm in
a systolic array of (2n — 2) pipelined cells. In section 4, an example is provided to show how
the algorithm works. Finally, in section 5 we analyze the time complexity of the proposed
algorithm and compare it with the one proposed by Prasad and Rangan.

2. Theoretical foundation

Let X =(x,, x;,....x,) and Z=(z,, z;,..., 2,) be two ordered sequences. We use X <Z
to denote that {x,, x,,...,x,}c{z,, z,,...,z,) and the order of the elements in X follows
their order in Z. For example, (b, ¢, €) =(a, b, ¢, d, e, f).

Also let T(ey, €5,...,€,_;) denote an arbitrary ordered spanning tree of G, where e,
€34...,€,_, are the edges of T. According to the order of edges of T, the edges of & can be
named as e,, €,,...,¢,, such that e, e;, ... and e,_, are the first (n — 1) edges in the
sequence (e, €;,...,¢,). With this naming of the edges, we define T(x,, x,,...,x,_,),
l=si=n—1, to be the ordered spanning tree constructed from the edge sequence
(€ r1s €irg0-e-1€0s €1, €3,...,€.), where e, is the edge considered first and e, last. It is
obvious that (x,, x,,....,x,_) =(e;, . €42,.-.:€,., €, €5,...,¢€,). For brevity, we sometimes
use T; to denote the ordered spanning tree T/(x,, x;,..., x,_,). By the above definition of T,
we have the following Lemma 1. It gives a way to check whether an edge e, is a bridge of
or not.

Lemma 1. Edge e; is a bridge of G iff e; is the last edge of T,

Proof (=) If ¢; is a bridge of , it is obvious that e, is an edge of any spanning tree of (.
Because e, is considered last to construct T, ¢; is the last edge of T,. (<) By definition
of T,, e, is last edge considered to construct T,. If e, is the last edge of T,, ¢, must not
be on any cycle of G. In other words, ¢, is a bridge of G. O

For example, suppose T((1, 2), (1, 4), (5, 6), (2, 3), (3, 5)) be an ordered spanning tree of
(7. As shown in Fig. I, according to T, the edges (1, 2), (1, 4), (5, 6), (2, 3), (3, 5), (2, 4) and
(3,4) of G are named as e, e,,..., and e, respectively. From the edge sequence

A fully-pipelined systolic algorithm for finding hridges Ly

@“/—@E‘ fﬁ)/m\“@
et ot :
@ @ @ brldgeD bridge

Fig. 1. (a) graph 7, (b) spanning tree T

(e, €4, €,, €5, €3, €4,) =((2, 4), (3, 4), (1, 2), (1, 4), (5, 6), (2, 3), (3, 5)), we can construct
T2, 4), (3, 4), (1, 2), (5, 6), (3, 5)). Because e; = (3, 5) is the last edge of T, (3, 5) is a bridge
of G.

As mentioned earlier, every bridge of & is always in any possible spanning tree of (. That
i5, only the edges of T are the possible candidates for bridges. Thus, in order to find all
bridges, we need to check only the edges of 7. By Lemma 1, for each edge e, of T, we first
construct T, from the edge sequence (e;,;, €,,3,...,€,, €], €3,...,¢,), and then detect
whether e, is the last edge of T, For checking all the edges of T, we need to construct
| T|{=n—1) ordered spanning trees. The following lemma describes an efficient way to
construct these (n — 1) ordered spanning trees one after another, and each can be constructed
from the previous one. It is useful for the implementation on the fully-pipelined systolic array.
It also greatly reduces the time complexity of the proposed algorithm.

Lemma 2. Let (y,, ¥;,..., ¥,_,) be the edge sequence of T, |, then T(x,, x,,...,x,_,) can be
constructed from the edge sequence (e, 1, ¥1, ¥ay.uy ¥y)

Proof. Case (1). If e, is a bridge, by Lemma 1 e,,, must be the last edge of T, ; ic.

€ip1=Vy—y- Since T, (¥, ¥2,.... Y- =¢;,) is constructed from (e, s,...,¢€,,
€y €pyy) and TAxy, ¥5,..., %,) is constructed from (e, € 2,010, €0
€)....,€;), we can get that T, must have the same edges as T, ., except that the first

edge of T; is the last edge of T, . That is, (x, x5,...,x,_) =(e,, |, ¥:» 1 T,
Since T; has the edges (e;,,, ¥\, ¥3,..., ¥,_5), it is obvious that T, must be the same
as the one constructed from the edge sequence (¢, 1, ¥y, Y502 01 ¥y_2s Yy

Case (2). If e;,, is not a bridge, then by Lemma 1 ¢, | is not an edge of T, ,. Hence,
in constructing T, from (e,,,....€,, €,,...,€,,,), the attaching e,,, to G' must
result in a cycle. Let the edge sequence of the cycle be (s,, 55,..., ¥, €;.), where
(83,55, ¥ = (¥ ¥auooo, ¥). Then, T, must have the same edges as T,., except
that e;,, is the first edge of 7; and y, is not in T,. That is, (x,, x5,..., %,)=

(s Yii Yoo ivi¥asis Peativong Pyoide Simce T, has the edges
(€15 ¥i» ¥areves ¥im1s ¥aspseees ¥uoy), it is obvious that 7, must be same as the one
constructed from the edge sequence (e, |, ¥, Yareeey Yesoons ¥y} This is because

(e, 1s 81 805, = ey ¥, ¥aue-., ¥,)) form a cycle, when we attach ¥, to G'.
Hence, y, is discarded. 0O

For example, as shown in Fig. I, suppose T.((2, 4), (3, 4), (1, 2), (5, 6), (3, 5)) is already
constructed. By Lemma 2, T,((3, 5), (2, 4), (3, 4), (1, 2), (5, 6)) can then be constructed simply
from the edge sequence ((es=(3, 5), (2, 4), (3, 4, (1, 2), (5, 6), (3, 5). Similarly,
T5(2, 3), (3, 5), (2, 4), (1, 2), (5, 6)) can be constructed from the edge sequence (e, =
(2,3), (3, 5),(2,4), (3, 4),(1, 2), (5, 6)).

From the above two lemmas, we outline our algorithm in a non-systolic fashion. The
complete systolic algorithm is presented in the next section.

B0 5.-C. Hsu et al.

Algorithm. Bridge-Finding
Step 1. Construct an arbitrarily ordered spanning tree T of &,
Step 2. Name the edges in E as e, e,....,8,,

such that e, e,,...,¢,_, are the edges of T.
Then construct the ordered spanning tree T, | according to
the edge sequence (€, By i €ms By Bgaese i Bac)

Step 3. For'i=n—1 down to 2
Check whether e, is a bridge of & according to Lemma 1;

(i.e. check whether e, is the last edge of Ti(x,, x5,...,x,_,).)
Construct T, from (¢, x,, x5,...,%,_,) according to Lemma 2.
Endfor.

Check whether e, is a bridge of G according to Lemma 1;
(i.e. check whether e, is the last edge of T,.)

Note that we do not combine Step 2 and Step 3 together. This is because T,_, and T,
1 <i=n— 2, are constructed by different ways. 7, _, is constructed from the edge sequence
(ep, . €, €y 8,). Whereas, T,, 1 =i =n -2, is constructed from the edge sequence
(€;r1s ¥is ¥20-002 ¥yt), where y,, y,, ... and y,_, are the edges of 7, ,. Note that in the
construction of T, _,, the non-tree edges (e,,....e,) of G — T must be considered before the
tree edges (e,,...,e,_,) of T. It seems rather difficult, since initially T is constructed from an
arbitrary edge sequence rather than from the edge sequence (e,,...,¢,,, €,,...,¢,_,). We will
solve this problem in section 3. In Step 3, there are two operations for edges of T. First each
edge is examined to see whether it is a bridge, and then used to construct the next ordered
spanning tree. Hence, the identification of the bridges can be carried out as the same time
with the construction of the ordered spanning trees. The details of implementation will be

given in section 3.

3. Implementation on a fully-pipelined systolic array

In this section, we first review the F-function [3], then describe how to implement the three
steps of the pseudo bridge-finding algorithm presented in section 2. We use a fully-pipelined
systolic array of (2n — 2) cells numbered from 1 to 2n — 2. We suppose that each cell knows
its own cell number, The first (n — 1) cells are used to implement the construction of T in
Step 1. Constructing of T, _, in Step 2 is implemented in the last (n — 1) cells. Constructing
T, 1=i=n-2, and finding of all bridges in Step 3 are also implemented in the last (n — 1)
cells. Two systolic algorithms will be given to describe the operations of the first (n — 1) cells
and the last (n — 1) cells, respectively.

3.1. F-function

The F-function is used to detect whether a cycle exists during the construction of an
ordered spanning tree in a pipelined systolic array. F-function is mainly based on the mapping
function {x, v} defined as below,

(x, y)(z) = {min(x, y) if z=max(x, ¥);
z otherwise,
We let (x, y)u, v) denote ({x, yXu), {(x, y¥v)). For example, {4, 5X1, 5) =
(€4, 5X(1), {4, 550 =(1, 4).
For each edge (u, v;) (ie. edge ¢), we define its fvalue (x,, y,) recursively, We let
(xy,) =(uy, v) and (x;, y)={x,_,, ¥;_;) - - {x, ¥, "u,, v,). F-function is then defined

A fully-pipefined systofic algorithm for finding bridees 381

as follows: F, is the identity function and F, is the complete function {x,_, y,_)+ {x;, ¥,).
By definition, (x,, y;) = (F_ (), F;_ (0 ={x;_p0 vy) - {xiy ¥y Mug, 0;).

For example, in Fig. I{a), suppose the edge sequence is ((1, 2), (1, 4), (5, 6), (2, 4),
(2,3),(3,5), 3, 4) ie (uy, v,)=(1,2), (u,, v;)=(1, 4), (us, v;)=(5, 6), (u,, v,)=(2, 4),
(g, vs) = (2, 3), (g, v,) = (3, 5) and (uq, v4) = (3, 4). We have

(%1, ¥1) = (4, v) =(1, 2)

(x2. ¥2) = (Fi(us), Fi(vy)) =<{xy, ¥ 0 (uy, 03) = (1, 23(1, 4) = (1, 4)

(%3, ¥3) = (Fa(u3), Fa(vs)) = (x5, v224x;, ¥:)(us, v3)
= (1, 4){1, 2)(5, 6) = (5, 6)

(%45 ¥4) = (F3(1,), Fa(vq)) = (5, 6)(1, 4)(1, 2)(2, 4) = (5, 6)(1, 4)(1, 4)
=(5,6)1, 1) = (1,1)

(x5, ¥5) = (Fy(us), Fo(vs)) = (1, 1345, 65(1, 431, 2}(2, 3} = (1, 3)

(x5y ¥) = (Fs(ug), F5(ve)) =<1, 3(1, 1)(5, 6)<1, 4)(1, 2}(3, 5) = (1, 5)

(X7, ¥7) = (Fe(uq), Fo(v7)) = (1, 5)(1, 301, 13¢5, 6341, 4)(1, 2)(3, 4)
={1;1)

It has been shown [3] that if x, is equal to y,, then attaching edge (u;, v,) to G’ must create
a cycle and the edge must be discarded. From above, attaching edges (u,, ;) and (u-, v-) to
G will create cycles, since x, =y, and x;=y,. Therefore, we discard (u,, v,) and (u,, v,)
and finally get the ordered spanning tree T as shown in Fig. I(h).

3.2, Implementation

In order to implement the proposed algorithm in a fully-systolic array, we use two tuples in
each cell, U-tuple and L-tuple. U-tuples record the input data and flow into the cells. L-tuples
record the tree edges appended to F and are stored in the cells. When the U-tuple flows to
cells, the cells execute the F-function recursively to compute the fvalue. By fvalue, we can
detect whether an edge is a tree-edge or not. If it is, then we copy the L-tuple from the
U-tuple and store the L-tuple in the cell. If it is not, then the U-tuple just flows over the cell.
The maintenance of U-tuples and L-tuples in a fully-pipelined implementation is the main
role of our algorithms,

Because T, T,_, and T, 1 =i =n — 2, are constructed from different edge sequences, we
use different inputs for the U-tuples and the L-tuples for these three different categories of
trees. Moreover, we suppose that the cycle time of the fully-pipelined systolic array is the
maximal cycle time for these three different constructions.-

3.2.1 Construction of T

The first (n — 1) cells is used to construct 7. We use U.u, v, x, y, STATE, TYPE) and
LAu, v, x, y) to denote the U-tuple and the L-tuple, respectively. (u, v) and (x, y) indicate
the flowing edge and its f-value. TYPE is used to indicate the type of an edge when it is
processed among cells. It may be an edge, a tree edge or a non-tree edges, denoted by e 3
“Tegee 01 =Ty, STATE is used to indicate the processing state of the edges. Initially, each
edge (u, v) of E is assigned a U-tuple: Ulu, v, x, y, STATE, TYPE) =
U, v, 4, U, “ial’s “eage’)s and flows into the cells one by one in an arbitrary edge sequence.
Here, %" and * ;. " mean that the edge just flows into the systolic array and is only known to
be an edge of E. There are three cases to process the flowing U-tuple in each cell.

sz 5-C. Hsu et al

(1) If USTATE =",/ and the cell has no L-tuple, it implies that the flowing edge (u, v) is
a tree edge and must be appended to G'. For this case, there is a L-tuple copied from
U-tuple and stored in the cell L.iw, v, x,)= Ulu, v, x, y). At the same time, the
U-tuple must be modified: Udw, v, x, v, x', v', STATE, TYPE)} =
(i, v, 1, 0, 8y U, “yypass]’s “Togge). Here, ‘“Toy,." means edges (u, v) has been determined to
be a tree edge, and ‘1" indicates we need not do anything for edge (u, v) in the
following cells of the first (n — 1) cells. Note that the newly modified U-tuple is prepared
as the input data for constructing T,_,. The details will be discussed in the following
subsection.

(2) If U.STATE =%, and the cell has an L-tuple, it implies that we need to compute the
fvalue (U.x, U.y) by the application of F-function: (U.x, U.y)= {L.x, L.y XU.x, U.y).
If U.x=U.y, it means that attaching the flowing edge (u, v) into G will create a cycle
and we must discard the non-tree edge (u, ¢). Thus, in this case we need not store the
L-tuple and just modify the U-tuple: u, v, x, y, x', ¥', STATE, TYPE) =

Ui, vy u, vy, 0, “yae 1y 0Ty,). Here, * 2T, means that edge (u, v) is determined
to be a non-tree edge. If L.x = Uy, then the U-tuple just flows over the cell.

(3) If USTATE = "pypuss 1 » We Just propagate the U-tuple to the next cell. In other words, the
edge has been determined to be a tree edge or a non-tree edge of T and we need not do
anything for it.

3.2.2. Construction of T, _,

We use the last (n — 1) cells to construet T, ;. As mentioned in section 2, by the definition,
T, _, is constructed from the edge sequence [e”,.., €p €11+, €,_1), Where the non-tree
edges (e,,...,e,) of G — T are considered before the tree edges (e,,...,e,_,)of T. It seems
rather diff icull since initially 7" is constructed from an arbitrary edge sequence rather than
from the edge sequence (e,,...,ée,, €,....,€,_,). In the solution we use ‘. to mark
STATE. If the edge in the U- tup]L flowing to the cell is a non-tree edge and the edge in the
L-tuple stored in the cell is a tree edge, we must change the USTATE to ‘... ‘e
indicates that the non-tree edge must be inserted in cells before the tree edges. Since we need
to know whether an edge stored in the L-tuple is a tree edge or a non-tree edge, we use L.(u,
v, x, ¥, TYPE) to denote L-tuples. We also use Ulw, v, x, v, x', ¥', STATE, TYPE) to
denote U-tuples which are prepared in the first (n — 1) cells. Here (x', ¥') is used to denote
the f-value of the inserted edge.

In the last (n — 1) cells, initially we must check whether the flowing U-tuple needs to be
marked ‘..., or not. After the checking, there are four cases to process the flowing U-tuple
in each cell.

(1) If USTATE =", 1" and the cell has no L-tuple, we do: L.u, v, x, y, TYPE):=
Ulu, v, x, y, TYPE) and U.STATE :=°,,.,2". That means that edge (u, v) flows into the
cell and is detected to be a tree edge, then we append it to G'. Here, *,,.,..2" indicates
that the flowing edge has been determined to be a tree edge for constructing 7, _, and we
need not do anything for the edge in the following cells,

(2) If USTATE =";,;1" and the cell has an L-tuple, then we need to compute the f-value
(U.x, U.y) by the application of F-function: (U.x, U.y):={L.x, L.yXU.x, U.y)
(U.x', Uy')={L.x, L.yXU.x’, U.y"). If U.x=U.y, it means that attaching edge (&, v)
into &' will create a cycle and we must discard edge (u, v). For this case, we need not
store the L-tuple and simply modify the U-tuple by doing U.STATE = ‘wypand - Here,
‘typass2 means that the flowing edge has been known to be a non-tree edge and we just
propagate the edge in the following cells. If U.x = /.y, then the edge just flows over the
cell.

A fullv-pipelined systolic algorithm for finding bridges 383

(3) If USTATE =°___.,, it means that the flowing edge in the U-tuple must be inserted into
the cell. For doing so, we just swap U.(u, v, x, v, TYPE) with L.(u, v, x, y, TYPE)} in the
cell. Besides, in order to make the f-values of the new U-tuple and L-tuple correct after
the swapping, we must modify the f-values of L-tuple and U-tuple before the swapping:
(Tx, T¥) =(L.x, L.y), (L.x, L.y)={x', y'XL.x, L.y) and (x', y') == {Tx, Ty }(x’, y').
Here, (Tx, Ty) is a temporary variable. After the swapping, if U.x = U.y, it means that the
edge of the new U-tuple is a non-trec edge and we need to modify the U-tuple:
USTATE =" ., 2". After the swapping, if U.x# U.y, the new U-tuple just flows over
the cell.

(4) If USTATE =",,,,,,2", we simply propagate the U-tuple to the next cell.

3.2.3. Identification of bridges

After constructing T and T, _,, the edges of T(e,, e,,....€,_,) are stored in the L.tuples
in the first (n — 1) cells and the edges of T,_(z,, z,,...,2,_,) are stored in the L.tuples in
the last (n — 1) cells. Subsequently, we need to identify whether the edges e, _, €,_5, ... and

¢, which are stored in the L.tuples in the first (n — 1) cells, are bridges or not. Thus, those

edges must be triggered from the first (n — 1) cells to the last (n — 1) cells. As mentioned in

Step 3 of section 2, there are two operations for each edge e; of T. First each ¢; must be

identified whether it is a bridge by checking whether it is the last edge of the currently

constructed tree TAx, x5,...,%,_,). Then it is also used to construct the next tree 7,_,

Because 7, , is constructed from the edge sequence (e, x,, x,,...,%,_;), ¢, must be

inserted before x,, x5, ... and x,_,. For doing so, we use ‘.’ to mark STATE.

In order to trigger the flow of the edges ¢, ¢,, ... and e, _, from the first (n — 1) cells into
the last (n—1) cells, we introduce (n— 1) extra U-tuples as the input data. We use
Ufw, v, x, v, x', v, u', v', STATE, TYPE) to denote those (n — 1) U-tuples. (u’, v') is used
to denote the edge which is currently identified whether it is a bridge. The initial values of
those (n — 1) U-tuples are assigned as U(—, S e e e e e b=A L
n—2,...,1, respectively. ‘i’ indicates the numhf.:r Df cell. When auch a U-tuple flows into cells
and if U.TYPE equals to the cell number, we copy the U-tuple from the [-tuple: U-tuple =
L-tuple. Note that those U-tuple are prepared in the first (n — 1) cells. The following
illustrates how we prepare the U-tuples corresponding to the edges of T in the first (n — 1)
cells.

(0) If UTYPE = 45 » WE copy U-tuple from [-tuple: UAu, v, x, y)=Ulx’, y', u', v') =
L.(u, v, u, v), where ‘. ° is the number of the cell.

When each extra U-tuple flows into the last (n — 1) cells, first we must check whether it is a
bridge. By Lemma 1, we can detect whether edge ¢, in the flowing U-tuple is a bridge by
simply checking in cell (Zn — 2) whether e, is the last edge of T(x,, x,,...,x,_,) or not.
However, for the sake of uniformity, we let the detection be carried out in each of the last
(n—1) cells. Note that the checking operation must be done before the application of
F-function, because after the application of F-function, the edge of the L-tuple belongs to
T,_, rather than T.. The following illustrates how the bridge is detected,

(1) If the condition Ulu', v’} = L.(u,) is detected, it means the currently identified edge
(u', ©') is equal to the last tree edge of the currently constructed tree. In this case, we
change L-TYPE to ‘.. . This means that the edge of L-tuple is detected to be a bridge.
In fact, this case only appears in the cell (2n — 2).

After the checking, the flowing U-tuple must be inserted in the cell to construct its
corresponding ordered spanning tree.)

(2) If USTATE =°,..,,/, it means that the flowing edge in the U-tuple must be inserted into
the Dell This case is the same as the third case of section 3.2.2.

L e 18 used so that each edge ¢, of T be inserted in cell (n — 1) + 1. Then the L-tuples
originally stored in the last (n — 1) c::ll will be shifted forward or be detected to be a non-tree

84 8.-C. Hsu et al,

edge of T,_, by the application of F-function. It is worth mentioning that when each e, of T
flows into the last (n — 1) cells, in addition it will be identified whether it is a bridge in T; and
is also to construct T, . The overlaps between the construction of the ordered spanning trees
and the identification of bridges reduce much of the time complexity.

Now, we propose the two fully-pipelined systolic algorithms implemented in the first
(n — 1) cells and the last (n — 1) cells.

Algorithm 1 (for the first n — I cells)
[(USTATE =" ;;u) A (L part is empty) — / * Append */
Let LAu, v, x, y)=Ulu, v, x, ¥}k
Let UASTATE, TYPE) = (, s ‘Togee %
/ * Prepare the input data Ulu, v, &, ¥, ', ¥', STATE, TYPE)
for constructing T, _, */
Let Ulx, y, x', y)=Ulu, v, u, v);
O(USTATE =*,,;;u") A (L part is not empty) — / * Compute f-value */
Let (Ux, Uy) o= {Lox, Loy WU.x, Uyk
(Ux=U.y)=/* Discard */

e m oy n
e e e e o
{_n_r_n_r_~_r_~_r“|nscn“r“4“}
el e N P e PO

(ki 3k, g M)
(35 35 “aitiar s aign)
g TR M W L)
(2,4, 2,4, "™ “eape)
(5.6, 5, 6. ™ “ectge™)
(L4 L4 ™ “odpe ™)

(L2052 ™ e ™)

cell:

= A T R o

10

L-tiples L-tuples

Fig. 2(a).

A fully-pipelined systolic algorithm for finding bridges

Let UASTATE, TYPE) ==y l’s 7 Togee %
/% Prepare the input data UQu, v, x, v, x', ¥', STATE, TYPE)
for constructing T, _, */
Let U x, y, x', v)=Udu, v, u, v);
O(USTATE =",,,...1) = / * Propagate */
Do nothing;
O(UTYPE =, ") = / * Prepare the input data
Ulu, v, x, y, x', ¥', u', ', STATE, TYPE) for identifying bridges */
* ‘celino 18 the number of the cell */
Let Ufu, v, x, yy=U(x', y', u', v')=L{u, v, u, v);
]

Algorithm 2 (for the last n — 1 cells)
[WA, v')=LS(u, v)— /* Identify bridges */
Let LTYPE ="y

D(W.STATE =", 1) A (UTYPE =* = T..,.) A (LTYPE =*T,,.") =
Let USTATE =", s / * Mark “en’ */
]

[(USTATE =%,,,,,1") A (L part is empty) = / * The first case */
Let L{u, v, x, y, TYPE):==Udu, v, x, y, TYPE); / * Append */
Let USTATE =", 2"

O(U.STATE =", ... 1") A (L part is not empty) - /* The second case */
Let (.x, U.y)s={L.x, L.y)U.x, U.y), /* Compute fvalue */

A B o T T S e s T B i
B e P R S I
{_1 ==, _~“iru|_-r|:”1“5“}

(3.4, 3,4, "™ ek)
(3535 “ineim™ “eape ™)
(2,302, 3 " ™)

cell: ‘

1204 L4, ™ e) (1,2,1,2)
2 |05,6,5,6, “paw ™ “c#“} (1,4,1,4)
- [A o T O T S O ey P

o U L a1 T ™y

o —

5 —

9
10

U-tuples L-tuples

Fig, 2(b}.

385

386 5-C. Hsu et al

Let (If.x', Uy y={L.x, L.yXU.x", U.y')
(U.x=Uy)— Let USTATE ==°, .2 / * Discard */
O(USTATE =) = / * The third case */
S ¥ Modify the f-values */
Let (Tx, Ty)=(L.x, L.y},
Let (L.x, Ly)={(Ux" Uy L x Ly
Let (U.x’, Uy e={Tx, Ty U.x', U.y");
Swap Ulu, v, x, y, TYPE) and Liu, v, x, y, TYPE);, / * Swap */
(U.x =U.y)— Let USTATE =°,,..2; / * Discard */
O(U.STATE =*, .2} = / * The fourth case */
Do nothing; / * Propagatc */
]

3.4 An example

Now, let us consider the graph G in Fig. I{a) to illustrate the proposed systolic algorithms,
Since there are six vertices in (, a ten-cell array is used. We assumed that the edges flow into
cells in the following order: (1, 2), (1, 4), (5, 6), (2, 4), (2, 3), (3, 5), (3, 4). The results shown in
the example were obtained from actual simulation, The following gave the essential parts of
the simulation. Figure 2(a) shows the initial input data including m(=7) edges of £ and
(n — 1) = 5) extra edges.

After four cycles, the edges (1, 2), (1, 4), (5, 6) and (2, 4) flow into cells. After F-function is
applied, the contents of cells are given in Fig. 2(b). In the fourth cycle, by the application of

(== = 1)
{_I — e ma—, — =, — “.HM" |11 ...4->J
{_I el _y“inxrl“, ...5»}

{3, 43,4, “nnias > “odge)
{31 53,5 “inll.lulhr "-bd#“}

cell: :

12,3, L3, "™ “odge ™} (1,2,1,2)
2 [42,4,2,4,2,4, % 1" 5 = edge (1,4,1,4)
3 |05.6.5,6,5,6, “npanl ™ “Togge) (5,6,5,6)
4 (L4 1,4, L4, “nypanl™s “Togge

S [& e s B TR ERE o VO

]

]

1

Li-tuples L-tuples

Fig. 2(c).

A fully-pipelined systolic algorithm for finding bridges 387

________ i L]
(PR T T T T T T et v

_—— = = = - —1"|mn"'l“4“}

cell:

O | e i i S s (1,2,1,2)
2 1, ™ e (1,4,1,4)

§ AT e {5, 6,5, 6)

4 12024503 "paal s Todg 7 (2,3,1,3)
5 [M2,4,2,4,2, 4, prpnl™ " Ty

6 |(5,6,5.6,5,6, “pypenl™ “rﬂh‘:; 0,2,1,2,“T.."
R [S I T S R, 0454, T ™
B |01:2,0,2, 1,2, "pens s Totee')

9
10

L-tuiples L-tuples
Fig. 2(d).

F-function, (U.x, U.¥) in cell 1 is changed: (U.x, U.y)s={(L.x, L.y {U.x, U.y)= {1, 2}2, 4)
=1, 4).

In the fifth eyele, edge (2, 3) flows into cell 1. By the application of F-function, (I/.x, Uy}
in cell 1 is changed: (U.x, U.y):= {1, 23(2, 3) = (1, 3). At the same time by the application of

- s ..]n
T e e e e e PR i Ty L

L O .
B B e S R)] * bnsery v

cell:

D == s i e) (1,2,1,2)
e T e T i, e, e T N T (1,4,1,4)
3 G431 i g™ {5,6,5,6)
4 |3,5,1,5, " “edee) {2,3,1,3)
5 02,3,2,3,2,3,, " ypunl"s "Tedgs")

R | M G o P N, (2,4,2,4," ~Toye")
T |5 6,5,6,5.6, "typal =" Tadga J (1,4, 1,4, " Ty ™
B (L4, L4 1.4 "pypans2”s “Tegge ")

B 0,2, 0,2, 1,2, e v Tncgs §
10

U-tuaprles L-tuples

Fig. 2(e).

358 8.-C. Hsu er al,

PapEE K S P
L e e e T e o)
cell:
L T T R 1,2,1, 2
2 = m e m e m e e A7) (1,4,1,4
3l B B e, Sl (5,6, 5, 6)
4 [03,4,3,4,3,4,%, 1" " Ty,™ (2,3,1,3)
A [A T O S L o (3,5,1,5
6 102,325,203, Gl Todan {14.?.4.“-'1"“#”}
T i Ll L aa ™ e Y (1 2,152, T .27
B 05,6, 5,0, 6, o 07 Y (5.6,5,6, “Tegee™
9 101, 4,1,4,1, 8,5 002" “Toin™
1w ((,21, 2, gt 0 Leage)

Li-tuples L-tuples
Fig. 2().

F-function, the U-tuple in cell 2 is changed from (2, 4, 1, 4, “ia’ ‘edge’) 1O
(2,4, 1, 1, ‘il L,,JEL] Because U.x =U.y, edge (2, 4) is detected to be a non-tree edge,
finally the U-tuple is modified as (2,4,2,4,2, 4,1, ‘=T,,"). Figure 2(c) shows the
result,

After eight cycles, we obtain the result shown in Fig. 2(d) . At the same time T, _ (= T.) is
being constructed in cell 6 ~ 10. In the 8th cycle, edge (1, 4) flowing into cell 7, the initial
U-tupleis (1, 4, 1, 4, 1, 4, %, 1, “Tey,.). Because initially in the cycle USTATE =*,, 1" of
cell 7 and the cell has no L-tuple, edge (1, 4} is detected to be a tree edge of T, _,. It must be
appended into the cell and the U-tuple must be modified: L.tuple :=(1, 4,1, 4, ‘T,
U-tuple == (1,4, 1,4, 1, 4, . .. 2, “Togpe)-

cell:

L [anananz 1,2,1,2)
2 [0,4,1,4,1,4,1,4, %, 27 (1,4,1,4)
3 [(5,6,5,6,5,6,5, 6, ", 37 (5.6, 5, 6)
4 [@2,3,2,3,2,3,2,3,..7 4 23,13
5 (0035058, 5 5 (3,5,1,5)
6 [0.4.3.2.3.2 %l 2T | (2,4,2,4," “To.")
7 16.5,8,5,0,5 " M (1,2,1,2, T,
8 (23,13, 1,3, el “Togee™ (5,6, 5,6, "Toge")
o [1,4,1,1,1,1, % 02", "™

10 [(5,6,5,6,5,6, "sypessZ”s “Toage")

U-tuples Letuples

Fig. 2(g).

A fully-pipelined systolic algorithm for finding bridges 3ag

FiE UA35,3,5,3, 5,3, 5, .05 20 23,5, 8,5, a5 T
L2.4,2,4." = Fyp™) L43,5,3,5.%5")

7 R o Vs B L N L O Y 7 B L T e T Y N LS
L.(3.4,3,2," = Ty..") £(2,4,2,4,% T 4.")

i 6 TR R b SR R R R O R £ e L B R R
A i s e ST W L Wy

i9 UP{LLL2 1535 " en “Toog) U(56,1,6,1,5,3, 5, "insen™ “Toige "}
B (5,6,5,8, " T, 0i™ Bl 3 s ey

EM L5061, 0015, 3. 5 i " Tg™) B85 s T T O L OO, Lk
i e B L{5.6,1,6,“T.0.")

Fip. 2(h).

In the ninth cycle, edge (2, 4) flows into cell 6 and the initial U-tuple of cell 6 is
(2,4,2,4,2, 4, s’y “ = Tegpe) and the L-tuple is (1, 2, 1, 2, *T,,,."). Because edge (2, 4) in
the U-tuple is a non-tree edge and edge (1, 2) in the L-tuple is a tree edge in cell 6, first we
must mark U.STATE as ... When USTATE =°, ..’ which means that we must swap the
U-tuple and the L-tuple in the cell. Before swapping the U-tuple and the L-tuple in cell 6, we
must modify the fvalues in cell 6: (L.x, L.y)=1{2, 431, 2)=(1, 2% (Ux", Uy):=
(1, 212, 4) = (1, 4). After the modification of f-values, we swap the U-tuple and the L-tuple.
Figure 2(e) shows the result.

In the tenth cycle, the initial U-tuple of cell 7is (1,2, 1,2, 1, 4, ‘s cdge)+ Because
USTATE =%, in cell 7, we must first modify the f-values of the U-tuple and the L-tuple
in the cell and then swap the U-tuple and the L-tuple. The new U-tuple is
T T G N O T “T.gge? and the new L-tuple is (1, 2, 1, 2, ‘Tegge)- Because Ux = Uy
edge (1, 4) is detected to be a non-tree edge and must be discarded. The I/.STATE must be
changed to be *,, ... 2". Figure 2(f) shows the result. From the L-tuples of the first 5 cells, we
can get T((1, 2), (1, 4), (5, 6), (2, 3), (3, 5)).

After twelve cycles, the 5 extra U-tuples for edges of T are copied from the L-tuples in the
first 5 cells and will flow into the last 5 cells. They are prepared as the input data for
identifying bridges in the last 5 cells. Figure 2(g) shows the result.

Fif UL 305,050 5 B, 525,252, 3 g ey
L{3,5,%,5,%5") E4(2:3,2,3,4")

BT UM3,5,2,5,2,3, 2.3, % ™ “57) G B W T PO R,
L{2,4,2,4,%~T.") L(3,5,2,5,5")

Bl WA 24,2,0,2,8 0 T B3, 4 2,20,0,2, 2.8, 0 oo ey
U e e LiZ 428,50y

B9 U 455.2.003, "ppan?™s 1 Tage”) U4(3,4,2,2,2.2,2,3, %0 ? “ 2 Togee”)
484 U0 U L P A T B B L

B0 U(3,42,2,2.2.2.3, %pue?™s “ Toee™) Ui(3,4,2,2,2,2,2, 3,002 2 Togee”)
o By g e O L

Fig. 2(i}.

390 8.-C Hsu et al,

Let us now consider the identification of bridges. As stated earlier, the U-tuples in cell 3,
4,...,1 serially flow into the last 5 cells to construct T}, 1 =i < 4 and to be identified whether
‘they are bridges. Let us first consider the edge e;=1(3, 5). In Fig. 2(h}, the left column
describes the snapshot of cell j at the beginning and the right column describes the snapshot
of cell j after the application of F-function for one systolic cycle, Cycle by cycle, Fig. 2(h)
shows the snapshots of cell j.

In cell 10 of the left column of Fig. 2(h}, since Udu', v') = LA{u, v)=1(3, 5), edge (3, 5) is
detected to be a bridge. First, L.TYPE must be changed to ‘,;,..". Then because U.STATE
="inser » We must modify the fovalues of the U-tuple and L-tuple and swap the U-tuple and
the L-tuple in cell 10. After the swapping, because U.x =U.y, USTATE is changed to
‘wpass2 - Note that after edge e;=(3,5) is detected to be a bridge in cell 10,
T (3,51, (2, 4), (3, 4), (1, 2), (5, 6)) is also constructed in cell 6-10 on cycle 13 ~ 17.

For edge ¢, = (2, 3) flowing into the last 5 cells, the snapshots of cell j are shown as in Fig.
2(i) cycle by cycle. In cell 8, after the application of F-function, because U.x = U, ¥, edge
(3, 4) must be discarded and USTATE must be changed to *,,,.,2". Edge (2, 3) is not a bridge
since in cell 10 Ulu', v') # L.u, v) before the application of F-function. For other edges of
T, the operations are similar. Finally, the two edges (3, 5) and (5, 6) are identified to be
bridges of 7 as shown in Fig. 1(b).

4. Conclusions

In the proposed algorithms, there are a lot of overlaps between the construction of the
trees and the identification of the bridges. There are m + (n — 1) input data including the m
edges of E for constructing trees T and 7,_, and the (n — 1) extra data for identifying the
bridges. The following discusses the execution time of the constructions of T and T,_, and
the identification of the bridges.

(1) Constructing T: From the first edge of E flowing into the first (n — 1) cells to the last
edge of E flowing out the first (rn — 1) cclls, it takes m + (n — 1) cycles.

(2) Constructing T, _,: It is obvious that after (n — 1) cycles the first edge of E will flow into
the first cell of the last (n — 1) cells. From the first edge of E flowing into the last (n — 1)
cells to the last edge of E flowing out the last (n — 1) cells, it also takes m + (n — 1)
cycles.

(3) Identifying the bridges: We can find that after m + (n — 1) cycles the first edge of those
extra edges flows into the first cell in the last (n — 1) cells. It takes 2(n — 1) cycles from
the first edge of those extra edges flowing into the last (n — 1) cells to the last edge of
those extra edges flowing out the last (n — 1) cells,

The total execution time of the proposed algorithm is (m + 3n — 3) systolic cycles. We use
the following figure to illustrate the execution time of our algorithm. It is worthy to mention
that in our algorithm, each cell maintains uniform data and data always moves forward.
Therefore all steps can be fully pipelined (Fig. 3).

Total : ? ”T*’ T m+.l:—,l; rn+2n—lz m+3n—?
T | Cort +(n — IN) 1

i s [(it +(n— 1)) |

Finding bridges | Xn—-1 1

A fully-pipelined systofic algorithm for finding bridges 301

Let us briefly review Prasad and Rangan's algorithm [5]. Their algorithm requires a linear
systolic array of n cells. Each cell is used to represent a vertex. Their algorithm is based on an
inverted spanning tree and a layout function L. If the edges of a directed spanning tree of an
undicted graph are all reversed (i.e. we direct the edges from a vertex to its father vertex in
the tree), the resulting graph is called an inverted spanning tree. A layout function L is used
to denote whether or not an edge is stored in the cells. They need four phases. First, an
algorithm is developed to find a spanning tree. Second, three complicated steps are proposed
to give directions to the edges obtained from first phase so that the spanning tree becomes an
inverted spanning tree. In this phase, the data may need to travel back to the left end of the
array. Third, two steps are used to find a layout function L. and then each edge is put in its
proper cell according to the function. Fourth, the bridges of the graph are identified by
marking out those edges in the inverted spanning tree which are not bridges. Their first phase
needs (m + n — 1) systolic eyeles and the second phase needs at least 3n systolic cycles. For
the third phase, it needs at least 2n systolic cycles. In the fourth phase, they have to test each
edge of a graph. Thus, it is accomplished in (m +n — 1) systolic cycles. Therefore, total
execution time of their algorithm requires at least (2m + Tn — 2) systolic cycles.

The total execution time of the proposed algorithm is expected to be less than that
proposed by Prasad and Rangan, because their algorithm needs more execution cycles and
has non-uniform and rather complicated phases. The use of fully-pipelined cells, and the
simplicity and uniformity of the operations in each cell are nontrivial. Two lemmas provided
in the paper support our design to have the distinctive properties,

References

[1] 5. Ashtaputre and C.I». Savage, Systolic arrays with embedded tree structures for connectivity problems, [EEE
Trans. Comput. 34 (5) (May 1985) 483484,

[2] K. Dioshi and P. Varman, Determining biconnectivity on a systolic array, Proc. Intermar. Conf on Parallel
Processing (1987) B48-850,

[3] 5.T. Huang, A fully-pipelined minimum-cost-spanning-trec constructor, J. Parallel Distribusted Compur. 9, (1) (May
1990 55-62.

[4] 5.T. Huang and M.S. Tsai, A linear systolic algorithm for the connected component problem, BIT 29 (1989)
217=-2126.

[5] B.K. Prasad and C.P. Rangan, Inverted spanning tree paradigm on systolic arrays, Proc. Internat. Workshep on
Systolic Arrays, University of Oxford (Jul. 1986)
[6] C.A. Savage, Systolic design for connectivity problems, [EEE Trans. Compat. 33 (1) (Jan. 1984) 99-104.

