Analyzing Self-Stabilization with Finite-State Machine Model

Su—Chu Hsu

Shing—Tsaan Huang

Institute of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 30043
Republic of China

Abstract

The. paper presents a-new approach for analyzing
self—stabilization with the finite—state machine
model. A finite—state machine is used to model the
behavior of each node in a distributed system when the
self—stabilizing algorithms are applied. The approach
15 useful to analyze the correciness of self—stabilizing
algorithms and their time complezity. A self—
stabilizing algorithm for finding mazimal malching is
used as an ezample to describe how the finite—staie
machine model is applied. The resulis show that the
approach is promising. Based on the approach, we get
a simpler proof for the correciness and obiain a tighler
upper bound of the time complezily than the one proved
by a variant funciton.

1 Introduction

In distributed systems, unexpected perturbations
on local variables are common; consequently, the
development of distributed algorithms with fault—
tolerance is desirable. The term self—stabilization was
first introduced by Dijkstra [5]. A self—stabilizing
systermn starting from any arbitrary initial state,
possibly illegitimate, is always guaranteed to converge
to a legitimate state in finite time without any outside
intervention. For the self—stabilizing systems, the
most attractive feature is that each node can locally
detect faults and recover automatically. Such a
property is very desirable for designing distributed
systemns with fault—tolerance. The concept of self—
stabilization was regarded by Lamport [14] as
Dijkstra’s most brilllant contribution in distributed
systems and a milestone in the area on fault—
tolerance.

This work was supported by the National Science
Counecil of the Republic of China in Taiwan under the
Contract NSC 80—0408—E007—04.

In the original paper on self—stabilization [3],
Dijkstra proposed three self—stabilizing protocols for
the mutual exclusion problem of nodes in a ring. The
system is self—stabilizing in the sense that, regardless
of the number of tokens that may exist initially, the
system is guaranteed to reach a state in which only one
token exists fairly circulating along the ring.
Following Dijkstra, some more discussions for the
problem were carried out in [2], [8] and [10]. The .
earliest paper extending Dijkstra's work that we know
of is by Kruijer in 1979 [13]. Kruijer investigated the
self—stabilization of nodes connected in a tree
structure. Recently, some related work addressing the
self—stabilization of nodes confipured in a general
network for distributed problems can be found in [4],
[7], [9] and [11].

Dijkstra’s three self—stabilizing protocols were
published in 1974, and the "belated" proof of the
protocols was provided in 1986 [6]. Apparently the
proof of correctness for self—stabilizing algorithms is
not a trivial matter. Kessels proposed an approach for
the first time by using a variant function to prove the
correctness of self—stabilizing algorithms [12]. The
basic concepts are : (i) to give a variant function whose
value is bounded, and (ii} to prove that the variant
function monotonically decreases (or increases) each
time when the algorithm is applied. This approach
was adopted and- applied in different problems
discussed in [4], [7], [9], [10] and [11]. In 1988, Chang
was the first to use probabilistic analysis to get the
average time complexity of one of Dijkstra’s protocols
[3]. However, in Chang’s analysis, he only considered
the special case in which a system starts with a fixed
initial state. Herman also used probabilistic analysis
to prove that his proposed algorithm can
probabilistically converge [8]. However, based on
these approaches, it is difficult to get a satisfiable time
complexity of the algorithms.

The main contribution of this paper is to develop a

new approach with the FSM (finite—state machine)
meadel for analyzing the correctness of the self—
stabilising algorithms and their time complexity. A
nondeterministic finite—state machine is used to
model the behavior of each node in the system when
the self—stabilizing algorithm is applied. The basic
concept of our approach is that regardless of any
initial state, each node will converge to a terminal
state in finite time and remains so forever. The
number of nodes in the system is finite. Hence,
regardless of any initial state of the system, it will
stabilize in finite time. A self—stabilizing algorithm
for finding maximal matching in distributed systems
reported by Hsu and Huang [9] is used as an example
to describe how the FSM model is applied. Consider a
distributed system modeled as graph G(V,E), where V
is the set of vertices which represents the set of
processors and E is the set of edges which represents
the set of the links of the network. The problem is to
develop a self—stabilizing algorithm (a fault—tolerant
graph algorithm) for finding maximal matching in G.
The algorithm had been proved and analyzed by using
a variant function in [9]. The upper bound of
Dl[| ‘u’| 3} was found. Based on the FSM model, we get
a simpler proof for the correctness of the algorithm. A
tighter upper bound D{| E|) is obtained. The results
show that our approach is promising,

The rest of the paper is organized as follows, In
Section 2, the FSM model is introduced. In Section 3,
an example is given to illustrate how the FSM model is
applied. In Section 4, we first review the approach
which uses a wvariant function for analyzing the
algorithm in [9], and then compare it with our new

approach. Finally, some remarks are drawn in Section
5.

2 The Finite—State Machine Model
In the paper, we propose a new approach that uses
the finite—state machine model for analysing self—
stabilization. In the approach, we make the following
assumptions. A distributed system can be viewed to
consist of a set of loosely connected systems which do
not share a global memory but can share information
by exchanging messages only. Each node is allowed to
have only a partial view of the global state which
depends on the connectivity of the system as well as
‘the propagation delay of different messages. FEach
node maintains its local variables. Due to any
unexpected perturbation, each variable may vary but
its value 13 always within its domain. The domainisa
set covers all possible values of the variable. Thus, the
initial state of the system can be arbitrary, possibly in
an illegitimate state. The objective in a distributed

system is to arrive at a global final state (legitimate
state) regardless of any initial state.

A self—stabilizing algorithm is expressed by a set of
rules. The rules are expressed as : "econdition —= a
corresponding move". The condition is defined to be
boolean functions of the node’s own variables and the
variables of its neighbors. When the condition a node
is true, the node may make the corresponding move.
Any node for which the condition is true is said to have
privilege. In some instances, many nodes may have
the privileges at the same time. However, it is required
that only one node makes its move at one time, and
the next move depends on the result from the previous
move, In the present paper, we assume that there
exists a central demon as introduced in [6] which is
used to activate a single node each time randemly.
The activated node executes an atomic step which is
composed of three substeps: (i) reading the variables
of all its neighbors, (ii) checking whether it has
privilege, and (ili}) making the corresponding move
(modifying its variables) if it has privilege. During the
execution of the atomic step no action for other node is
allowed. Note that there may have different moving
sequences because of the random selection by the
central demon.

In our analysis, each node has a state. The state is
defined by its wvariables and the wvariables of its
neighbors. Note that the state so defined is different
from that of [4], [5], [7], [8], [10] and [11]. In those
previous works, the state of a node is defined only by
its local variables. As will be seen, the state of the
paper is used to analyze the self-—stabilizing
algorithms rather than to express the rules. Let I
denote all the possible initial states of each node in the
system. Also let F represent all the possible terminal
states of each node. Assume that once a node reaches
a terminal state, it remains so forever. Hence, when all
nodes are in the states of F, we say the system
stabilizes,

We use a nondeterministic finite—state machine
FSM=(L,R,T,F) to model the behavior of each node,
where I and F are the set of initial and terminal states
respectively, R is the set of rule symbols, and T is the
set of all possible state transitions of the node. There

are two kinds of rule symbols, Rj and Rj. Each
directed edge of T represents a state transition of the
node due to an application of the rule by itself or by

R.
another node. We use currentstate——ineztstate to
denote the state transition of the nede from the
current state to the next state due to an application of

rule (Rj) by itself. Whereas, currenfstufe_R]'_.

nertsiate is used to denote the state transition of the
node from the current state to the next state due to an
application of rule [Rj} by another node.

Figure 1 is an example showing the state—
transition diagram of an FSM. There are five states
for each node and three rules are used. A node with
state 52 changes its state to 53 if itself applies (R2); a
node with state 54 changes its state to 51 if another
node applies (R2), etc.

FSM=(LR,T,F)
I={51|32,53,54,55} : the set of initial states;

R={R1,R2,R3,R1,R2} : the set of rule symbols;
F={53,55} : the set of terminal states; :
T={T1,T2,T3,T4,T5T6,TT}: the set of all possible
state transitions, where

T1: §1-2E 153 T5: S2—L 54
T?:SIHR-E—-JSE) Tﬁ:Si—*R—g-—-—rSl
T3:.52- 82 g3 T7: 5425 g5,

T4; 52251

Fipure 1 An example for FSM

The main difficulty of this approach is how to
derive the set of state transitions, T. An example in
Section 3 will show how to derive T in details.

Proving the correctness of a self—stabilizing
algorithm needs to verify that the algorithm satisfies
the following requirements :

(i) If the system reaches a legitimate state, no node can
make further moves.

(ii) If the system is in any illegitimate state, there
exists at least one node which can make a move.

(iii) Regardless of any initial state and regardless of
any moving sequence selected by the central demon,
the system is guaranteed to stabilize after a finite
number of moves.

The purpose for verifying requirement (iii) is to
prove the convergence of the algorithm. The basic
concept in proving that the algorithm meets
requirement (iil) is to show that regardless of any
initial state of each node and regardless of which node
is selected to make a move by the central demeon, each
node will converge to a terminal state in a finite

number of moves and remains so thereafter. If there is
no cycles in the state—transition diagram of the FSM,
the proof is obvious. If there exist cycles, the proof will
be done as long as we can prove that the number of
tirmes that each node goes through the cycles is finite.
In our analysis, we particularly focus on the edges
which result in eycles in the diagram. An example in
the following section will describe it in details.
Because the number of nodes in the system is finite
and each node converges to a terminal state in a finite
number of moves, the system stabilizes in a finite
number of moves.

Finally, the basic steps involved in applying the
FSM model can be summarized as follows :
(i) Design the rules of self—stabilizing algorithm.
(ii) Define the states of each node.
(iii} Derive the state—transition diagram in terms of
the rules and the states.
(iv) Prove the correctness of the algorithm.
{v) Analyze the time complexity of the algorithm.

3 An Example

In this section, we first describe the problem for
finding maximal matching in a distributed network
and the algorithm proposed in [9]. Then we show how
the FSM model is applied.

Consider an undirected graph G(V,E), where
I"u,.F | =n. A matchingof G(V,E) is a set of edges M, M
C E, in which no two edges connect to a common node.
A matching M is maximal if it is not properly
contained in any other matching. For example, in
Figure 2, G({V,E) with V={1,2, ..., 9} is given.
M={(1,2}, (3,4), (6,7}, (5,9)} is a maximal matching
of G. {(1,2), (1,8}, ... } is not a matching because
edges (1,2) and (1,8) connect to a commoen node.
{(1,2), (3,4), (6,7)} is @ matching but not a maximal
matching because it is properly contained in {(1,2),
(3,4), (6,7), (5,9} }.

M={(1,2),(3,4),(6,7),(5,9)} is a maximal matching
Fipure 2 An example for a maximal matchin

Figure (3) is used to illustrate some of the above
state—transitions which may not be obvious. Figure
3(a) describes case (2). In the case, besides i, initially
there is a neighbor k of j selecting j. After j applies
(R1) and selects k, 5.ichanges its state from wailing to
chaining. Figure 3(b) describes case (5). In the case,
initially S.i and S.j both are chaining. After j applies
(R3) and lets 7—null, 5.1 will change its state from
chaining to waiting. Figure 3(c) and 3(d) describe case
(8). Suppose i has a neighbor set {jyj2,--jmJ}-
Initially, except j, all the neighbors of i have gotten
matched. In Figure 3(c), 5.7 is free and there is a
neighbor kof jselecting j. After japplies (R1) and gets
matched, 5.7 changes its state from free to dead In
Figure 3(d), j selects k and S.j is waiting. After k
applies (K1) and j gets matched, 5.1 changes its state
from freeto dead.

" O—®

waiting (K1)

= @O-@=®

chaining

(b)
mg?;%_@q@: CaOmOm0)

3) watling

9O

~ Ko-o
free _3@ e 4:)@.

Figure 3 Illustration for state—transitions.

Note that for each state except the terminal states,
the above observations considered have been covered
all possible cases of i's neighbors. From the above
discussions, we have all possible state transitions as
below.

T1: wa.iiingi——imatch ed

T2: wailin gR—lrchmim'n q

T3: Chﬂ.‘iﬂiﬂg‘_Rﬂ-—-"‘?ﬁ'EE
Td: chuim‘nngcad

T5: cheinin gi—-rw aiting
T6: fre eLmatched

TT: frte—-—gz—iwaiiing
T8: _ﬁ-eeL-ldeui

From the discussion of Section 3.1, we know the
initial state of node i may be maiched, dead, waiting,
free, or chaining, i.e., I={matched, dead, waiting, free,
chaining}. The terminal state of node ¢ must be either
matched or dead when the system reaches a legitimate
state. Based on the above state transitions, we get

R={R1,R2,R3,R1,R3} and T={T1,T2,T3,T4,T5,T6,

T7,T8}. Therefore, the state—transition diagram of
the FSM can be obtained as below.

chaining }
oy —":i
R Y Rl
_Hw n-iﬁr:ir;
FSM=(L,R,T,F)

I={matched dead, waiting, free,chaining};

R={R1,R2,R3,R1,R3};
T={T1,T2,T3,T4,T57T6,TT,T8};
F={matched dead}.
Figure 4 The F5M of each node for the maximal
matching problem

Repgardless of which initial state of a node, the state
transitions of the node can be derived (accepted) from
the finite—state machine of Figure 4. By the finite—
state machine of Figure 4, we can easily get the
following Lemma 1 and Lemma 2. These two lernmas
will be used in proving Lemma 4.

Lemma 1 If we remove the transition T2:waiting

Rl

chaining, the diagram becomes acyclic.
Proof: In the state—transition diagram of Figure 4,
note that there are two cycles: waiting—chaining—
free—wailing and waiting—tchaining—waiting. It
is easy to see that if we remove the transition T2, the
diagram becomes acyclic. O

Assume that each node 7in G knows N(i), the set of
its adjacent nodes (neighbors). We let node i maintain
& pointer variable. The pointer points to one of i's
neighbors and is used to indicate which neighbor
selects to match. If i's pointer points to null, then it
means i does not select anyone. The notation +—7is
used to denote that the peinter of i points to j, and
i—null is used to mean that the pointer of i points to
null. The notation #=jis used to represent +—jand
7—+; Le., i and j mutually select each other and get
matched. Due to unexpected perturbations, the
pointer of each node may be affected and vary but it is
always within its domain, {null} U N({).

3.1 Design the Rules of the Algorithm
The following set of rules is the algorithm reported

in [8]. It is identically stored and executed in each
node i. The conditions of the rules of each node i are
defined to be boolean functions of its own pointer and
the pointers of its neighbors. Node i enjoying the
selected privilege will then make its move by
modifying its pointer.
The Self—Stabilizing Algorithm for Maximal
Matching :
(R1) (—null) A (Jj: JEN(1): 7—+)

== Let i—3j
(R2) (i—null) A (Vk: kEN(1): 2(k—1)) A

(3j: jeN(d): F—null)

— Let +—j
(R3) (=) A () A (kFD)

—— Let +—null

Rule (R1) indicates that if node { does not select

anyone and a neighbor j selects 4, then iselects j. Rule
(R2) describes the situation that involves three
conditions : (i) node i selects no one, (ii) none of s
neighbors selects 4, and (iii) there exists a neighbor j
selecting no one. If all three conditions hold, then i
selects 5. Rule (R3) means that if node i has selected j
and 7 has selected another node, then i must give up
selecting . MNote that if i has a neighbor which has
selected 4, then i could not apply (R2). This fact will
be used in the proof of Lemma 2 in Section 4. Note
that the self—stabilizing algorithm iz a fault—tolerant
graph algorithm rather than the token based
distributed algorithms.

3.2 Define the States

In our discussion, S.1 is used to denocte the state of
node ¢. As mentioned earlier, the states so defined are
not used in the design of the rules but used for the
analysis of the algorithm. If #—j, then there are three
possible states. As mentioned before, the states are
defined by #s pointer and the pointers of its neighbors.

(1) S.i=waiting if () A (F—null);

(2) S.i=matched if i—j A 7= (Le., iE37);

(3) S.i=chaining if (+—1) A (F—Ek) A (ki).
S.i=waiting means i has selected j and waits for § to
select it. S.f=maiched means ¢ has gotten matched.
And S.i=chaining means i has selected j but j has
selected another node.

If +—+null, then there are two possible states.

(4) S.i=dead if (+—null) A (V;: 7eN (1) : 5.j=matched);
(5) S.i=free if {i—null) A (37: jeN (i) : S.j/# matched).

S.i=dead meansz i has no chance to get matched
because all its neighbors have gotten matched. And
S.i=free means that although i does not select anyone,
it 5till has chances to get matehed.

Therefore, the state of each node may be waiiing,
matched, chaining, dead, or free. A global state of the
system is defined as the collection of all states of the
nodez in the system. By the definition of maximal
matching, when the system reaches maximal
matching, each node must be either matched or dead.
Thus, the system is said to be in a legitimate state (i.e.,
stabilized) if each node is either matched or dead.
When the following GMM is true, the system has
reached a legitimate state.

GMM = (Vi:: S.i=matched V S.i=dead)

3.3 Derive the State—Transition Diagram

In this subsection, we derive the state—transition
diagram from the rules of the algorithm and the states
of the nodes. For each kind of states, we discuss how
the state changes when rules are applied. By the
definitions of the states of the nodes and the
applications of the rules, we can have the following
observations of the state—transitions,
(i) It is easy to see that no matter which rule is applied,
once S.i=maiched or dead, it remains unchanged.
(ii} If S.i=waiting (i.e., 7, 7—null}, then 5.7 will
change

(1) from waiting to matched if j applies (R1) and

lets 7—1, or '

(2) from wadting to chaining if j applies (R1) and

lets 7—k, ki,
(iil) If S.i=chaining (i.e., =, 7k, k#i), then S.iwill
change

(3) from chaining to free if tapplies (R3), or

(4) from chaining to dead if fapplies (R3), or

(5) from chaining to waiting if j applies (R3).
(iv) If S.i=free (i.e., +—mnull and (Jj : jeN(i) :
S.j# matched)), then S.iwill change

(6) from free to matched if iapplies (R1), or

(7) from free to waiting if {applies (R2), or

(8) from free to dead if j changes its state to

matched, because jor j's neighbor applies (R1).

Lemma 2 Once a node’s state changes from watiing to
chaining, a neighbor of the node must change its state
from free to matched at the same time.

Proof: Suppose S.iis waiting (Le., i—jand ;F—mnall).
That 5.1 changes from waiting to ehaining only occurs
when node j applies (R1) letting 7—k, k#i. As
mentioned earlier, j could not apply (R2), because ¢
has selected j. Thus, by applying (R1), node j will get
matched with some node k. O

3.4 Prove the Correctness of the Algorithm

According to the definition of GMM and the rules
of the algorithm, it is obvious that when GMM is true,
no rules can be applied. Thus, it is easy to see that the
algorithm meets requirement (i). Lemma 3 will prove
that the algorithm satisfies requirement (ii). By
means of the diagram of Figure 4, Lemma 4 and
Theorem 1 show that the algorithm meets
requirement (iii) and an upper bound for the
algorithm can be obtained.

Lemma 3 If GMM is false, there exists at least one
node which can make a move; i.e., there exists some
rule to be applied.
Proof: GMM is false ==} (Ji: : 7(S.i=matched V
S.i=dead)). In other words, there exists some node :
whose state is wafling, choining or free.
(1)S.i=waiting (i.e., +—, 7—null): j can make a
move by applying (R1).
(2)S.i=chaining (i.e., v, 7—Fk, kfi): ican apply
(R3).
(3)S.i=free (ie., #—null and (dijEN(i): S5.;#
matched)): This case indicates that 5.7 may be dead,
waiting, chaining or free.
(i) 5.j=dead: By the definition of dead, 5.j=dead is
impossible, because S.i=free.
(ii) S.j=waiting (7—k): By (1), kcan apply (R1).
(iil) §.j=chaining (7—k, k—h, h#j): By (2), jcan
apply (R3).
(iv) S.j=free: By contradiction, we assume that no
node can apply a rule. That means that there is no
node whose state is waiting or chaining according
to (1) and (2); i.e., S.i=S.j=free and all other
nodes are free, dead or matched. In this case, by
the rules it is obvious that both i and jcan apply
(R2). Itiscontrary to the assumption. O

Lemma 4 Node i can make at most O(|N(:)|)
transitions before it goes to the state matched or dead.

Proof: By Lemma 1, if we remove the transition
waiting—— chaining, then there is no cycle in the
diagram of Figure 4. In the acyclic diagram, it is clear
that the state of each node i will converge to matched

or dead within three transitions. If we can establish
that the number of times that node i goes through the |
transition waiting——chaining is within O(| N(i)|),
then the proof is obtained. By Lemma 2, if node #'s
state changes from wailing to chaining, then there
must exist a neighbor of i whose state changes from
free to maiched at the same time. Once a node's state
is matched, it will remain so thereafter. Furthermore,
the number of the neighbors of node iis |N(3)|. It
follows that the number of times that node i can go
through the transition weiting——tchaining is
o(|N(3)|).D

3.5 Analyze the Time Complexity of the
Algorithm
Because the number of the nodes in the system is
finite and each node converges to a terminal state in a
finite number of moves, the time complexity of the
algorithm can be analyzed as below.

Theorem 1 Regardless of any initial state, the system
converges to a legitimate state within 'D{| E|) moves.

Proof: By Lemma 4, the state of ecach node i will
converge to matched or dead within O(|N()|)
transitions. In the worst case, the maximal total
number of transitions for the system reaching a
legitimate state is ¥ ./ O(|N() |)= O(|E|). Ttis

possible that several state transitions of different
nodes may occur at the same time when a node makes
a move. Thus, the maximal total number of moves is
less than the maximal total number of transitions.
Therefore, regardless of any initial state, the system
converges to a legitimate state within O(| E|) moves.
o

4 Comparisons

In order to clearly compare the basic concepts,
advantages and disadvantages of our approach with
the previous one of [9], we first review the relevant
parts of the previous approach, and then compare it
with our approach.

In order to prove the algorithm meets requirement
(iii), a verification method based on a variant function
was reported in [9]. The basic concepts of the method
are : (1) to give a variant function whose value is
bounded; (2) to prove the wvariant function
monotonically decreases (or inereases) when nodes
make moves.

Let m,d,w,fand ¢ denote the total number of nodes
whose state are matched, dead, waiting, free and
chaining respectively. A variant function F was
defined as: F = (m+d,w,fe).

The comparison of the values of Fis by lexicographical
order. Each global state of the system corresponds to
one value of F.

By the definition of GMM, the value of F
corresponding to the legitimate state is (n,0,0,0).
Clearly, it is the upper bound of F. Thus, if F can be
proved to monotonically increase for each move, the
algorithm will meet requirement (iii}.

Lemma 5 F monotonically increases each time when
rule (R1), (R2) or (R3) is applied.

Proof: There are three cases to be diseussed.

(1)If (R1) is applied, then there will be a pair of nodes
which can get matched. In other words,

(S.i=free) A (S.j=waiting A j—H)

(after i applies (R1))

— (S.i=maiched) A (S.j=matched).
Because the states of i and j are changed to matched,
the states of some neighbors of ¢ and/or j may be
changed from free to dead. Furthermore, it should be
clear that no node can have its state changed from
matched or dead to any other state no matter which
rule is applied. Therefore, after (R1) is applied, no
matter how states of nodes will be affected, at least we
know that m increases by 2 and d may increase. It
follows that Fincreases.
(2)If (R2) is applied by node i, then we have (i—null)
A (VE: BEN(D) : (k—+)) A (37 : jeN(s) : f—null)
before the application of (R2). Tt can be easily verified
that after ¢ applies (R2), only 5.7 changes from free to
waiting. In other words,

(S.i=free)

(after i applies (R2))

= (S.i=waiting).
Thus, after (R.2) is applied, m, d and ¢ are unchanged,
f decreases by 1 and wincreases by 1. It follows that F
increases,
(3)If (R3) is applied by node 4, then +—null after the
application of (R3). Only the following two cases are
possible.
(i) (S.i=chaining) A (Vk: keN(i) : 2 (k—1))

(after t applies (R3))
== (S.i=freeV S.i=dead)
(ii) (S.i=chaining) A (k—1)
[* Note that S.k=chaining. */

(after i applies (R3))

== (S5.i=free) A (5.k=waiting)
In case (i), it is clear that although ¢ decreases by 1,
either f or d should increase by 1. Hence, Fincreases.
In case (i), although ¢ decreases at least by 2, f
should increase by 1 and w should increase at least by

1. Thus, Fincreases.

By (1), (2) and (3), we have that F monotonically
increases each time when rule (R1}), (R2) or (R3) is
applied. O

The following Lemma 6 is given to support
Theorem 2. The proof of Lernma 6 can be found in [1].

Lemma 6 The number of the non—negative integer
solutions (zy,2g,%3,24) for the eguation zi+zatez+
n.—H].)_ (n+1)*(n+2)*(n+3)

< e 6 '

z4=nis |

Theorem 2 Regardless of any initial state, the system
will converge to a legitimate state within O(|V|3)
moves.

Proof: Repardless of which state of the systemn, the
value of m+d+wtfte is always equal to n(=|V])
and the values of m+4d, w, fand ¢ are always between 0
and n individually. In the worst case, the initial value
of Fis (0,0,0,n). One would like to know how many
moves it may need to transfer F from (0,0,0,n) to
(n,0,0,0) in the worst case . Such a problem can be
reduced to the problem described in Lemma 6 with
zi=m+d, zg=w, 23=f and z4=c. Thus, the maximal
total number of moves for the system to converge to a
{n—!-l]*{n-é-i}?{n-f-ﬂ} T Ol e

legitimate state is

o(|v|[3.o

As shown above, in [9] a variant function was used
to analyze the correctness of the algorithm and its time
complexity. Compared with the current approach
using FSM, it can be seen that the previous approach
using variant function is more complex. Besides that,
the variant function only maps the system to a value
which can not deseribe the behavior of the system in
details. Thus, the obtained upper bound O | 'Vl 3 is
not tight enough.

Sometimes, it is difficult to analyze the behavior of
the whole systern when rules are applied. We can first
analyze the behavior of each node, and then by
collecting the behaviors of the nodes, the behavior of
the whole system can be obtained. The currently
proposed approach with the finite—state machine
model adopts this idea. In the approach, we derive all
the state—transitions for each node from the states of
the nodes and the rules of the algorithm. The state is
defined not only based on the information of a node
but also based on the information of its neighbors.
When we analyze the behavior of each node, we
actually have gotten some global information of the
system. Such a property is very worthwhile to note.

The most important part of the new approach is
how to analyze and prove that each node eventually
converges to a terminal state even though there are
eycles in the state—transition diagram. In our
example, we particularly focus on the directed edges
which form cycles in the state—transition diagram.
We prove that the number of times that each node
goes through those edges is finite. This makes the
analysis much simpler. In our analysis, we get a
simpler proof for the correctness of the algerithm and
obtain a tighter upper bound O(| E |).

5 Conclusions

In this paper, we propose a new approach with the
finite—state machine model to analyze the self—
stabilizing algorithms. A self—stabilizing algorithm
for finding maximal matching given in [9] is used to as
an example illustrate how the approach is applied.
The results show that the proposed approach is
promising. We expect that it will have broader
applications.

Because of the randomness of the system topology,
the arbitrary initial state of the system, and the
nondeterministic behavior of the central demon, the
self—stabilizing algorithms are more complex and
difficult to be analyzed than the conventional
distributed algorithms. Hew to analyze self—
stabilizing algorithms is a challenge research topic.
Besides the variant function and the FSM model,
other approaches for analyzing the algorithms deserve
further studies.

References

[1] R.C.Boseand B. Manvel, Introduction {o
Combinatoricd Theory, John Wiley & Sons, Inc.,
pp. 48, 1984,

[2] I.E.Burnsand J. Pachl "Uniform Self—
Stabilizing Rings." ACM Trans. on
Programming Language and Systems, Vol. 11,
No. 2, pp. 330—344, 1989,

[3] E.J1.H.Chang, G.H. Gonnet and D. Rotem "On
the Cost of Self—Stabilization", Inf. Process.
Lett., Vol. 24, pp. 311316, 1987.

[4] N.5.Chen,F.P.Yuand 5.T. Huang "A Self—
Stabilizing Algorithm for Constructing Spanning
Trees." Inf. Process. Lett., Vol. 39, pp. 147—151,
1991,

[6] E.W.Dijkstra "Self—Stabilizing Systems in
Spite of Distributed Control." Cormmun. ACM,
Vol. 17, No. 11, pp. 643—644, 1974,

[6) E.W.Dijkstra "A Belated Proof of Self—
Stabilization." Distributed Comput., Vol. 1, No.
1, pp. 546, 1936.

[7]

(8]
(]
[10]

[11]

(2]

[13]

[14]

M.G. Gouda and T. Herman "Stabilizing
Unison", Inf. Process. Lett., Vol. 35, pp.
171175, 1990,

T. Herman "Probabilistic Seli—Stabilization."
Inf. Process. Lett., Vol. 35, pp. 63—67, 1990.

5.C. Hsu and 5.T. Huang "A Self=S5Stabilizing for
Maximal Matching." Tech. Report.

S.T. Huang "Leader Election in Uniform Rings."
submitted to ACM Trans. on Programming
Language and Systems, under revision.
5.T.Huang and N.5. Chen "A Seli—Stabilizing
Algorithm for Constructing Breadth—First
Trees." to appear in Inf. Process. Lett.

J.L.W. Kesszels "An Exercise in Proving
Self—Stabilization with a variant Function." Inf.
Process. Lett., Vol. 29, pp. 39—42, 1988.

H.S.M. Kruijer "Self—Stabilization (in Spite of
Distributed Control) in Tree—Structured
Systems." Inf. Process. Lett., Vol. &, pp. 9105,
1979.

L. Lamport "Solved Problems, Unsolved
Problems and Non—Problems in Concurreney."”
Proc. 3rd ACM Symposium on Principles of
Distributed Computing, pp. 1—11, 1984.

